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STATISTICAL POWER, P VALUES,
DESCRIPTIVE STATISTICS, AND
EFFECT SIZES

A “BACK-TO-BASICS” APPROACH
TO ADVANCING QUANTITATIVE
METHODS IN L2 RESEARCH

Luke Plonsky

Introduction

Methodologically speaking, a great deal of quantitative L2 research has been mis-
guided. All too often we have been asking the wrong questions of our data. Con-
sequently, many of the answers we have derived have been, at best, weak in their
ability to inform theory and practice and, at worst, wrong or misleading. This
chapter seeks to reorient the field toward more appropriate kinds of questions
and analytical approaches. More specifically, I argue here against the field’s lawed
use and interpretation of statistical significance and, instead, in favor of more
thorough consideration of descriptive statistics including eftect sizes and confi-
dence intervals (Cls). The approach I advocate in this chapter is not only more
basic, statistically speaking, and more computationally straightforward, but it is also
inherently more informative and more accurate when compared to the most fun-
damental and commonly used analyses such as ¢ tests, ANOVAs, and correlations.

I begin the chapter with a model that describes quantitative L2 research as cur-
rently practiced, pointing out major flaws in our approach.I then review major weak-
nesses of relying on statistical significance (p values), particularly in the case of tests
comparing means (t tests, ANOVAs) and correlations. I follow this discussion with a
brief introduction to the notion of statistical power, followed by guides to calculating
and using eftect sizes and other descriptive statistics including Cls. I conclude with a
revised/proposed model of what quantitative L2 research might look like if we were
to embrace this approach. Points made throughout the discussion are illustrated with
data-based examples, many of which can be replicated using the practice data set that
accompanies this chapter (http://oak.ucc.nau.edu/ldp3/AQMSLR html). Unlike
much of the remainder of this book, the statistical issues in this chapter are very
simple. Nevertheless, these ideas largely go against what is often taught in introduc-
tory research methods courses and certainly what is found in most L2 journals.
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Before beginning the main discussion, I also want to emphasize that the con-
cepts and procedures in this chapter, though far from mainstream L2 research
practice, are central to a set of methodological reforms currently gaining traction
in the field. Among other issues, this movement has sought to (a) encourage rep-
lication research (Porte, 2012), (b) promote a synthetic ethic in primary as well as
secondary research (e.g., Norris & Ortega, 2000, 2006; Oswald & Plonsky, 2010;
Plonsky & Oswald, Chapter 6 in this volume), (c) critically reflect on and exam-
ine methodological practices and self-efficacy (e.g., Larson-Hall & Plonsky, 2015;
Loewen et al., 2014; Plonsky, 2013,2014), and (d) introduce novel analytical tech-
niques (e.g., Cunnings, 2012; Larson-Hall & Herrington, 2010; LaFlair, Egbert, &
Plonsky, Chapter 4 in this volume; Plonsky, Egbert, & LaFlair, in press). Taking
yet another step back, it is also worth noting that, although many of the concepts
and techniques embodied by this movement and discussed 1in this chapter may be
unfamiliar to L2 researchers, they have been recognized for decades as the pre-
ferred means to conducting basic quantitative research among methodologists in
other social sciences such as psychology and education.

The Flawed Notion of Statistical Significance

To begin this discussion on the flaws of statistical significance, let’s first consider
the pivotal role of p values. Figure 3.1 presents a descriptive account of the path
by which most quantitative L2 research attempts to advance the field. Researchers
begin by conducting a study on the effect of A on B or the relationship between
X andY. (Note: Most studies are already flawed at this point in that their research
questions elicit only yes/no answers such as “Is there a difference ...?” or “Is there
a relationship between ...?”. A much more informative approach is to pose more
open-ended research questions that are inherently more informative and that bet-
ter represent the continuous data being collected, such as “To what extent . ..?".

Conduct a study
(e.g., the effects of A on B)

¥\

p < 0.05 p>0.05 Trash

v

Important finding / Get published!

\

Modify relevant theory, research, practice

FIGURE 3.1 A descriptive model of quantitative L2 research
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Once the data are collected and analyzed using, for example, a t-test or Pearson
correlation, most researchers will take special note of the p value associated with
the results of those tests. As depicted in Figure 3.1, if on one hand the p value is
larger than .05, the difference between groups or the correlation is often consid-
ered uninteresting and is discarded, and another study might be run to attempt to
achieve a statistically significant result. On the other hand, if the #-test or correla-
tion yields a statistically significant result (i.e., <.05), it is considered important
and 1s much more likely to get published and to consequently have an impact on
L2 theory, future research, and practice.

In this model, which is, again, the dominant approach in quantitative L2
research, researcher perception and dissemination of study results both hinge
critically on our adherence to null hypothesis significance testing (NHST). As
[ describe in the remainder of this section, this approach is deeply flawed on many
accounts, both conceptually and statistically. I focus here, though, on three main
arguments: (a) NHST is unreliable, (b) NHST is crude and uninformative, and
(c) NHST is arbitrary. Among the many other, more comprehensive accounts
of the inherent flaws in NHST, I recommend Kline (2013, Chapter 3), Norris
(in press), and Cumming (2012, Chapter 2).

NHST Is Unreliable

The first major flaw of NHST is that it is unreliable. More specifically, because
p values vary as a function of sample size, any correlation or difference in mean
scores can reach statistical significance, given a large enough sample. Consider
the (fabricated) data from three studies in Tables 3.1-3.3 each of which, let’s say,
is interested in comparing the effects of traditional (Group 1) with experimen-
tal (Group 2) approaches to teaching vocabulary. A t-test comparing the means
in Study 1 found no difference between the two groups, which each have five
participants.

Study 2 collected data from 15 participants in each condition. Although their
means and standard deviations were identical to those in Study 1, the p value in

TABLE 3.1 Data and results from Sample Study 1

Study N N M, (SD,) M, (SD,) p d

1 2

Study 1 5 5 15 (3) 18 (4) 2265 85

TABLE 3.2 Data and results from Sample Study 2

Study N hy M, (SD,) M, (SD,) p d

1 2

Study 1 15 15 15 (3) 18 (4) 0276 85
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TABLE 3.3 Data and results from Sample Study 3

Study N, hy M, (SD)) M, (SD,) p d

1 2

Study 1 45 45 15 (3) 18 (4) .0001 85

Study 2 was found to be statistically significant. The results of this study, therefore,
indicate that there is a real difference between the two conditions.

The samples in Study 3 were even larger: 45 participants in each group. The
same means and standard deviations were observed for the two conditions again,
but this time the p value is even smaller: .0001.

Although the only difference across studies was in the sample size, in a tra-
ditional NHST framework, we would likely interpret these studies as show-
ing inconsistent support for the experimental intervention. If we focus on the
descriptive statistics, including the Cohen’s d eftect size, however, we see that all
three studies provide the same exact result: a positive and somewhat strong eftect
(d = .85) 1n favor of the experimental condition.The only diftference across stud-
ies was in the sample size.

The same inconsistency we observed in the previous example also applies to
correlational analyses (and virtually all other analyses based on NHST). A correla-
tion coefficient of .4 based on 30 participants may not be statistically significant.
With a sample of 60, however, that same correlation would, in most cases, yield
a p value below .05. In both cases, the correlation between the two variables as
observed is .4, but the statistical significance is difterent simply because of their
respective Ns.

At this point and as a means to help make sense of the potential unreliability
of results simply based on different sample sizes, it might be useful to remind
ourselves of the definition of p: the likelithood that the observed mean difference
(or correlation, etc.) would be observed given a true population difterence (or
correlation) of 0 (i.e., d = 0; r = 0). Because neither the mean difference nor the
correlation is ever going to be 0, any size mean difference or correlation can reach
statistical significance given a large enough sample. Along these lines, over two
decades ago, Thompson (1992) reminds us that “[with NHST] . .. tired research-
ers, having collected data on hundreds of subjects, then conduct a statistical test to
evaluate whether there were a lot of subjects, which the researchers already know,
because they collected the data and know they are tired.” (p. 434).

NHST Is Crude and Uninformative

The results provided by NHST are not only unreliable, they are extremely unin-
formative. When we submit our data to a test of statistical significance, we reduce
the number of possible outcomes to two. In other words, we reduce continuous
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results to a yes/no dichotomy, often overlooking or even ignoring the rich infor-
mation provided by our descriptive statistics. By doing so, we waste our data and
we fail to accurately or informatively advance L2 theory, research, and practice.

To be sure, p values tell us nothing about (a) replicability, (b) theoretical or
practical importance, or, perhaps most importantly, (c) magnitude of eftects. A p
value of greater than .05 does not necessarily indicate that there is no difference
between two group means or even that there is a small difference between two
group means. Nevertheless, many researchers interpret it that way, falling prey to
what Cumming (2012) calls the “slippery slope of nonsignificance” (p. 31). Like-
wise, very small p values can certainly correspond to small eftects.

To illustrate the lack of informational value provided by p values, consider
the following examples from published L2 studies. In one study published
recently the authors present the results of a t-test comparing the “ideal L2 self™
ratings for high- (M = 4.65, SD = 1) and low-motivation (M = 4.56, SD = 1.1)
learners. The t-test yielded a nonstatistically significant p value, indicating no
difference between the two groups. This result, to be expected given the very
similar descriptives, was confirmed by a very small eta-squared effect size of
.002, which we can understand to mean that group membership (i.e., high vs.
low motivation) explains less than 1% of the variance in ideal self ratings. In the
same table, the authors present the results of another ¢-test comparing the same
two groups on ought-to self ratings. The mean score was 3.74 (SD = 1.1) for
the high-motivation group and 3.96 (SD = 1) for the low-motivation group. In
this case, however, the t-test revealed a statistically significant difterence between
the groups. Are we then to interpret the difference between groups here to be
large or important? The eta-squared value for this contrast was just .01, indicat-
ing that group membership could explain 1% of the variance in group means.
From a dichotomous NHST perspective, one of these tests reveals an important
difference in group means and the other does not. From the perspective of
practical significance based on the effect size and other descriptive statistics, it
is clear that the two groups are nearly identical. (See results related to Table 4
in Mackey & Sachs, 2012, for a counterexample wherein the authors correctly
interpret substantial correlations despite the nonstatistical p values associated
with them.)

Consider as well the results in Table 3.4 which were extracted from nine
primary studies in Taylor, Stevens, and Asher’s (2006) meta-analysis of the effects
of reading strategy instruction. Three distinct patterns of results can be observed
in this sample, each of which reveals the crudeness of p. First, although the
means being compared in studies A—E were not found to be statistically signifi-
cant, their eftect sizes (Hedges’ g, which expresses mean difterence in standard
deviation units, similar to Cohen’s d) were substantial—certainly more than
the null effect we might interpret based on a nonstatistical p value. These eftect
sizes were, in fact, almost identical to but slightly larger, actually, than those in
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TABLE 3.4 Example results showing the inconsistency of p values*

Study N, N, Effect size (g) p

A 12 15 —.555 152
B 8 8 .556 .259
C 30 29 492 .060
D 24 21 .553 .066
E 21 22 472 123
F 78 80 481 .003
G 183 61 .530 .000
H 29 14 —.251 436
[ 12 14 —.292 450

*Results from Taylor et al. (2006)

studies F and G, both of which obtained statistical significance. Second, recall
from the previous section that p values fluctuate as Ns increase or decrease. In
this particular case, although the eftect sizes from A—E and F—G are very similar,
the p values in the latter group are statistically significant due to their relatively
large Ns. Third, like studies A—E, H and I yielded p values larger than .05. In
the NHST approach, these results would therefore be equated with no differ-
ence between groups. However, not only does the effect size show a nontrivial
difference between groups; these differences and that of A run in the opposite
direction to what we might expect, showing a substantial advantage for the
comparison groups. Bottom line: Not only are p values unreliable, but they also
fail to provide information about the size or importance of the relationships and
effects we are interested in.

NHST Is Arbitrary

Students in introductory research methods courses often ask what 1s so special
about the .05 level of statistical significance. The answer, of course, is nothing—a
sentiment Rosnow and Rosenthal (1989) had in mind when they quipped,“surely,
God loves the .06 nearly as much as the .05” (p. 1277). Nevertheless, much of the
tield lives (or least publishes) according to an arbitrary standard for importance.

To summarize the discussion thus far, quantitative L2 research relies very
strongly on an analytical approach that is unreliable and arbitrary. Even if
NHST-based findings were stable and principled, results based on this approach
would still fail to provide us any indication of the kinds of information we are
most interested in or that can guide L2 theory and practice. Consequently, unless
we are content to attempt to advance our field in this fashion (i.e., based on arbi-
trary, unreliable, yes/no-only results), we must change our approach (see Norris,
in press).
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Statistical Power

A closely related notion, statistical power is the probability of observing a statis-
tically significant relationship given that the null hypothesis is false (e.g., d # 0;
r # 0). The more powerful the study, the less likelihood of false negatives. An
understanding of power can also be used to answer the very practical and frequent
question of “How many participants do I need (to detect statistical significance)?”
(That is, assuming we are still interested in statistical significance.)

The conventionally desired level of statistical power in the social sciences is .80
which, when achieved, provides the researcher with an 80% chance of detecting
a statistical relationship if present (Cohen, 1992). (Note that the .80 convention
for avoiding false negatives is much more liberal than the typical safeguard for
avoiding false positives of .05. In the former, we implicitly accept an error rate of
20%; in the latter the accepted error rate is theoretically only 5%.) But how can
we determine if .80 power is possible? As with statistical significance, power varies
as a function of the eftect size and sample size such that, given a larger anticipated
effect (e.g., d ~ 1), a smaller sample will be able to detect a statistical relationship
80% of the time (N ~ 35). Likewise, when a small effect (e.g., d = .2) is expected
based on theoretical predictions and/or previous research, a larger sample
(N = 400) is needed in order to have an 80% chance of finding the effect at the
.05 level.!

A related exercise and consideration might be to estimate the statistical power
in previous L2 research, much of which relies necessarily on small samples. Plon-
sky and Gass (2011) examined this issue by means of a post hoc power analysis for
174 studies in the interactionist tradition of L2 research. Their results show that
this subdomain has had, on average, just a 56% chance of obtaining statistically
significant results. Likewise, looking at 606 primary studies across many different
subdomains of L2 research, Plonsky (2013) found average post hoc power at just
.57.These results can be interpreted as indicating that the likelithood of observing
expected relationships is, on average, comparable to tossing a coin and hoping for
heads.

Evidence of what I refer to as the “power problem” (Plonsky, 2013, p. 678) in
L2 research does not stop there. Additional indications include (a) extremely rare
use of power analyses in order to inform sampling decisions, (b) generally small
samples / high sampling error, (c) heavy reliance on NHST, (d) presence of non-
normal distributions and a lack of checking for statistical assumptions, and (e) rel-
atively infrequent use of multivariate statistics that can preserve experiment-wise
power (Plonsky, 2013).

One step toward addressing this problem is to determine sample sizes based on
a priori power analyses, rather than simply based on convenience or convention.
Using free software such as G¥Power (Faul, Erdfelder, Lang, & Buchner, 2007) or
any number of freely available online calculators designed for this purpose, you
can calculate the sample size needed for a given level of statistical power such as
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.80. The only information you need to bring to the equation is the anticipated
effect size. One source for obtaining this value would be a meta-analysis on a
topic closely related to that of the study. In the absence of a relevant meta-analytic
effect size, you could also plug into the equation the eftect size from one or more
studies on a closely related topic.

At this point I should recognize that in some instances it is not possible to col-
lect data from a sample large enough to obtain an ideal level of statistical power.
For example, researchers who study learners of less commonly taught languages
may find it difficult to obtain large samples. Similarly, funding may not be avail-
able to pay as many participants as are needed for adequate power. These problems
are further compounded in cases where the anticipated effect size is small, thus
necessitating a larger sample. In such cases, I recommend taking one or more of
the three following courses of action. First, when you know that a study lacks
statistical power, you should avoid the use of statistical testing. Focus instead on
the descriptives, including effect sizes and Cls (see discussion below). Second, in
addition to avoiding tests of statistical significance, underpowered studies should
also address fewer contrasts between or among groups. For example, if you only
expect to be able to recruit 35 participants, rather than comparing four groups/
conditions, divide them into two. The additional two conditions can then be
compared to themselves and to the first two in a subsequent study. Third, you
could bootstrap the analyses or statistics of interest based on the available data/
sample (see Larson-Hall & Herrington, 2010; Plonsky et al., in press; LaFlair et al.,
Chapter 4 in this volume).

However, even if we were able to adequately address the multifaceted “power
problem” in L2 research, we would still be relying on the flawed notion of statis-
tical significance. More specifically, a proper understanding and use of statistical
power can help the field overcome, at least in part, the unreliability of NHST.
The other problems, however, remain. Consider Cumming’s (2012) comments
on this issue:

I’'m ambivalent about statistical power. On the one hand, if we’re using
NHST, power is a vital part of research planning ... On the other hand,
power is defined in terms of NHST, so if we dont use NHST we can
ignore power and instead use precision for research planning . .. However,
[ feel it’s still necessary to understand power . .. partly to understand NHST
and its weaknesses. . . . although I hope that, sometime in the future, power

will need only a small historical mention.
(p. 321)

To be clear, I am not suggesting that sample size does not matter. Larger sam-
ples will yield less sampling error and, thus, greater precision in our results. The
point here, though, is that the notion of statistical power as a means to reliably
detect small p values is only relevant within the (flawed) NHST framework. As an
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alternative, I argue in the next section that thorough use of descriptive statistics,
including eftect sizes and Cls, can and should replace much of the statistical test-
ing in L2 research.

Effect Sizes

The focus up to this point in the chapter has been somewhat negative. I have
essentially been describing problematic trends and practices in the field. In this
section I describe a way forward that helps us to address and improve on these
practices by relying on eftect sizes in place of NHST. In doing so, I want to
address three fundamental questions: (a) What are eftect sizes, and how do we
calculate them? (b) Why should we use eftect sizes? (That is, how is this approach
an improvement on current quantitative data practice?) (¢) How can we interpret
effect sizes?

What Are Effect Sizes, and How Do We Calculate Them?

Let’s start off with a definition of effect sizes: a standardized, quantitative indica-
tion of a relationship or an eftect. There are many types of eftect size indices, but
the ones that are most common and applicable in the context of L2 research
fall into three categories: mean differences (e.g., d), correlations (r), and variance
accounted for (r?, R?, and n?).

The first among these, Cohen’s d, is a descriptive statistic that expresses the
mean difference between (or within) groups (in SD units—Ilike a z-score). This
index is therefore used when we are interested in comparing mean scores, as is
often the case in L2 research. The formula for this effect size is very simple:

— Ml _M2
SD

d

The difference between means (the numerator) is divided by the pooled stan-
dard deviation or that of a control or baseline group, depending on whether the
groups have equal variance (see Cumming, 2012). This calculation can be done by
hand, but there are also numerous online calculators and Microsoft Excel macros
developed for this purpose. (Unfortunately and inexplicably, SPSS does not cur-
rently provide Cohen’s d in the output from tests comparing mean scores.) I often
use the calculator developed by David B. Wilson that can be downloaded freely
here: http://mason.gmu.edu/~dwilsonb/downloads/ES_Calculator.xls. Figure 3.2
shows how user-friendly macros such as this one are. The user simply enters the
groups’ means, standard deviations, and sample sizes. The eftect size here is d = .85,
which is based on the sample data I used earlier to show the unreliability of
p values. A similar calculator freely available through the Centre for Evaluation and
Monitoring is also available here: http://www.cem.org/eftect-size-calculator. This
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calculator has the added advantage of providing Cls around the d value. We can
see in Figure 3.3, for example, that the standardized mean difference, which we
observed at .85, is likely between .41 and 1.27 in the population. Finally, Hedges’ g,
a variant of Cohen’s d, also expresses mean difterences and is useful in that it applies
a correction for biased effects due to small samples, which are often found in L2
research (Plonsky, 2013).

Though not often viewed this way, correlations such as Pearson’s r are another
type of effect size. This index, which ranges from —1 to +1, is likely very familiar
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A “Back-to-Basics” Approach 33

to most L2 researchers. There are Web-based applications for calculating correla-
tion coefficients, but most L2 researchers use SPSS.To run a correlation based on
normally distributed data, the sequence is Analyze > Correlate > Bivariate.
You then move your two or more (continuously measured) variables into the
Variables box and select OK. For example, using the practice data set I've made
available with this chapter, the correlation between the length (in words) of
abstracts and their overall ratings is r = .38. (These data are from a study in which
Jesse Egbert and I examined the relationship between linguistic and stylistic fea-
tures of conference abstracts and the scores given to them by raters; Egbert &
Plonsky, in press.)

Most researchers reading this are probably very familiar with and used to cal-
culating correlation coefticients. Few, however, are likely aware of how to cal-
culate Cls around this statistic. Again, if we run the correlation described in the
previous paragraph, we can see that SPSS does not produce this information
automatically, but it can be done by following a short sequence of steps.

The first step is to create new variables based on standardized values of the
two variables of interest: Analyze > Descriptive Statistics > Descriptives.
From within the Descriptives dialogue box, move “Words-tot” and “R _all” into
the Variable(s) box. Before clicking OK, check the box for Save standardized values
as variables. The next step is to run the correlation again. However, because we
know that SPSS does not produce Cls using the Correlate > Bivariate pro-
cedure, we have to run the correlation as a simple regression. (You may recall
that correlation is simply a type of regression model in which there is a single,
continuous predictor variable.) The regression menu can be accessed as follows:
Analyze > Regression > Linear. Abstract score is our criterion variable so we’ll
move our newly created standardized variable for abstract score (“Zscore: R _all”)
into the Dependent box on the right. Length is our predictor and we’ll move
the standardized variable for length (“Zscore: Words-tot”) to the Independent(s)
box.The final command we need to give SPSS is within the Statistics box. Sim-
ply click on Statistics in the top right corner of the Linear Regression dialogue
box, and check the box for Confidence intervals. Then click Continue to close the
Statistics dialogue box and OK to run the regression. The two dialogue boxes
should look like those in Figures 3.4 and 3.5. The other default settings are fine
for our purposes.

The output from this procedure should look like Figure 3.6.We can see in the
Standardized Coefficients column that the regression model has produced the
same value for the correlation (.38) that we found earlier using the Correlate
> Bivariate function. This table also provides the 95% CI for that correlation:
.272—.488, which tells us the range of values that the true population correlation
1s likely to fall within. (There are also numerous online calculators that can be
used to calculate the ClIs for correlation coefficients, such as this one provided
by Chris Evans on the PSYCTC website, available at http://www.psyctc.org/
stats/R/CI_correln1.html)
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Coefficients®
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FIGURE 3.6 Output for linear regression with Cls for correlation

Closely related to r, both conceptually and statistically, 1s a third set or “fam-
ily” of effect sizes that indicate the extent of shared variance between variables or
the amount (%) of variance in one variable that can be accounted for by another.
This family includes the R? effect size, which we can calculate by simply squaring
a correlation coefficient. You’ll recall from the previous example that the cor-
relation we observed between abstract rating and length of words was .38. Once
we calculate this value, we can square it (.38 X .38) to determine the amount of
shared variance between the two variables: 14%.

In the context of multiple regression analyses (see Jeon, Chapter 7 in this
volume), the R? effect size index expresses the total or combined variance in the
criterion (dependent) variable that is accounted for by the predictor variables.
This eftect size 1s produced automatically in the SPSS output for multiple regres-
sion. Returning to our abstract study, Egbert and I also used multiple regression
to attempt to explain additional variance in abstract ratings. Our model produced
a cumulative R? value of .31.This result indicates that the set of predictors in our
model (e.g., word length, inclusion of results) was able to account for almost a
third of the variance in abstract ratings.

The second eftect size in this family is eta-squared. You may recognize this
effect size as appearing along with ANOVA results and/or in SPSS output.
Although we don’t often think of ANOVA as a type of regression, the two
procedures are actually quite similar and, consequently, eta-squared, like R?
expresses the percent of variance in the dependent variable that can be accounted
for by group membership in the independent variable(s). Granena (2013), for
example, compared aptitude test scores for native speakers, early L2 learners,
and late L2 learners. The results of an ANOVA revealed an eta-squared value of
approximately .08. In other words, 8% of the variance in aptitude scores could
be accounted for by group membership (i.e., native, early, late). Like r and R?,
eta-squared can be calculated using SPSS when running ANOVA, but not with-
out asking it to do so. Furthermore, you may have to use a different set of menus
than you are used to. Rather than running ANOVA through the Comparing
Means menu, to calculate an ANOVA and its corresponding eta-squared value,



36 Luke Plonsky

you need to run the ANOVA through the General Linear Model drop-down
menu: Analyze > General Linear Model > Univariate. This procedure will
produce an ANOVA.To request an eta-squared value as part of the output, click
the Options button and check the box for Estimates of effect size. An eta-squared
value will then be provided in the column labeled as such. Note also that this
value for the overall result (“Corrected model”) will be identical to the R? value
provided as a footnote underneath the output (another remnant of the fact that
ANOVA is actually a type of regression, falling under the larger family of general
linear models; see Cohen, 1968).

There are several additional types of effect size indices for different types of data
and analyses. For categorical or frequency data, researchers may turn to phi and
Kramer’s V. Another option for categorical data is a simple percentage. Though
not traditionally regarded as an eftect size, percentages certainly comply with our
earlier definition and, more importantly, they are very easy both to calculate and to
interpret. A final effect size commonly used with categorical data is the odds ratio.
This index, which expresses the probability of a possible (binary) outcome given a
particular condition, is particularly useful in conjunction with logistic regression.

Why Use Effect Sizes?

The main reasons for using effect sizes largely correspond to and address the
flaws of NHST described earlier. Recall that the first major flaw was that NHST
1s unreliable in that any size mean difference or correlation will reach statistical
significance given a large-enough sample. Effect sizes, by contrast, are not affected
by sample size.? The second major flaw was that NHST is crude and uninfor-
mative and that it forces continuous data into a dichotomous (significant/non-
significant) result. Furthermore, p values tell us nothing about the extent of the
relationship in question (e.g., Cohen, 1994). Effect sizes, however, provide an esti-
mate of the actual strength of the relationship or of the magnitude of the effect
in question. Although L2 researchers have been trained, implicitly or explicitly, to
set up studies that elicit dichotomous responses, theory and practice can truly be
informed only through the more nuanced and precise findings provided in eftect
sizes. The third and perhaps most obvious flaw of NHST is the arbitrary nature
of the .05 cutoft. Unlike p values, effect sizes are continuous, standardized (again,
think z-scores), and scale-free. These features of effect sizes enable researchers to
make cross-study comparisons and to combine (average) them via meta-analysis.

Beyond these strong conceptual and statistical reasons, I can add one very
compelling practical motivation for considering effect sizes: Many major journals
now require authors to report them. Following the precedent set by an editorial
in Language Learning (Ellis, 2000), published in concert with Norris and Ortega’s
(2000) seminal meta-analysis in the same issue, several journals that publish L2
research now require authors to report effect sizes. In addition to Language Learn-
ing, these journals include Foreign Language Annals, Language Learning & Technology,
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Language lesting, Modern Language Journal, Studies in Second Language Acquisition,
and TESOL Quarterly. Additionally, many other L2 journals without such explicit
policies adhere to APA style, which also requires reporting of effect sizes.

As a result of both the benetits described and the relatively recent requirements
of journals in this area, the presence of effect sizes has increased substantially in
recent years. Plonsky and Gass’s (2011) review of methodological practices in the
interactionist tradition found, for example, that whereas none of the 174 stud-
ies they examined in the 1980s or 1990s reported eftect sizes, 27% of the studies
published in the 2000s did so. Likewise, Plonsky (2014) found the percentage of
studies reporting effect sizes to increase exponentially from 3% in the 1990s to
42% in the 2000s.

Interpreting Effect Sizes

It 1s clear that the field’s interest in effect sizes is increasing. However, primary
researchers currently do little in the way of using effect sizes to enhance our
results or, more importantly, our understanding of the variables and relationships
we study. (The same could be said for descriptive statistics more generally.) That
1s, most authors currently treat eftect sizes as a hoop to jump through or box to
check as part of a set of manuscript submission guidelines. What authors need to
do is provide more meaningful interpretations of the full range of descriptives in
their data, including of course their effect sizes.

Unlike p values, which are usually understood in a very straightforward (but
equally uninformative) manner (i.e., significant/nonsignificant), eftect sizes
require more nuanced interpretation. Taking advantage of the rich information
provided by effect sizes forces us to address questions such as “What does a
d value of .65 mean (for theory and practice)?” “What constitutes a small or
large effect in this particular domain?” and “How does a correlation of; say, .35
compare with the predictions of theory for the relationship between these two
variables?”

There are a number of different approaches for addressing these questions (see
Stukas & Cumming, in press). One very common approach has been to compare
observed effects to benchmarks designed for this purpose. Based on their synthesis
of effects from 346 primary studies and 91 meta-analyses (IN > 604,000), Plonsky
and Oswald (2014) proposed a general scale for interpreting d and r values in L2
research (Table 3.5).Values for each type of effect size, labeled as roughly small,
medium, and large correspond approximately to the 25th, 50th, and 75th per-
centiles of observed effects in their sample. Such benchmarks can be useful as a
means to situate the effects of a particular study in relation to the larger field. The
authors also caution, however, that doing so should only be considered a first step
in the interpretation of eftect sizes. In other words, we cannot assume that what
constitutes a large effect in one area of L2 research is necessarily the same as what
one would expect to be a large effect in all other areas.
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TABLE 3.5 General benchmarks for interpreting d and r effect sizes in L2 research

Effect size Small Medium Large
Mean difference (d)
Between-groups 0.40 0.70 1.00
Within-groups 0.60 1.00 1.40
Correlation (1) 0.25 0.40 0.60

Indeed, there are a number of additional factors that merit consideration when
interpreting eftect sizes. Most critically, researchers must provide an explanation
of what the particular numerical effects they observe mean in the context of their
domain. Others factors, discussed at length in Plonsky and Oswald (2014), include
(a) effects found in previous studies in the same subdomain; (b) mathematical
readings of effect sizes (see Plonsky & Oswald, 2014, pp. 893—894); (c) theoreti-
cal and methodological maturity of the domain in question; (d) research setting
(e.g., lab vs. classroom); (e) practical significance; (f') publication bias in previous
research; (g) psychometric properties and artifacts; and (h) other methodological
features.

Descriptive Statistics: Means, Standard Deviations, and Cls

In addition to calculating and interpreting effect sizes, it is absolutely criti-
cal that researchers become very familiar with their descriptive statistics. (I
realize this will sound obvious to many of you, but scholars in our field often
carry out statistical tests without ever first conducting a thorough examina-
tion of their descriptive statistics.) In the case of research investigating mean
differences, those means are probably a good place to start. But they are just
that: a starting point. Mean scores give an initial indication of the difference(s)
between two or more groups. They say nothing, however, about the spread of
scores around them. For this crucial information, we usually look at standard
deviations.

I have to point out here that the importance of understanding the spread of
scores can hardly be overstated. This concept, called variance, is deeply entrenched
in nearly all statistical techniques employed in L2 research and across the social
sciences (see GLM in Plonsky, Chapter 1, p. 5). For example, though we tend
to think of ANOVA (analysis of variance) as a comparison of means, it is just as
much if not more concerned with within- and between-group variance. Recall
from the previous section that a standard deviation forms the denominator in the
formula for Cohen’s d. Despite the centrality of this statistic and the concept it
represents, very rarely do L2 researchers give any explicit consideration of stan-
dard deviations in written reports. If fact, it is quite common for them to be left
out of published L2 research (e.g., Plonsky, 2013).
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In terms of statistical testing and comparisons of mean scores, when there 1s a
lot of variance (large standard deviations) group scores are more likely to overlap.
Consequently, the results of a ¢ test or ANOVA are less likely to be statistically
significant and their corresponding d values will be smaller. More conceptually
speaking, a close look at the standard deviation can help you decide how much
faith to put in your mean with respect to its ability to represent your sample. Stan-
dard deviations can also provide insights into substantive issues. For example, in
experimental designs, an increase in the experimental group’s standard deviation
from pre- to posttest might indicate that not all learners responded uniformly to
the treatment and that there may be learner-internal moderators at play.

A related descriptive statistic that is considered and reported even less fre-
quently is the CI. Cls express a range of values around an observed mean score
that are likely (at a given level of probability, typically 95%) to contain the true
population mean. Returning to the abstract study described earlier,imagine you
were interested in understanding typical abstract ratings. We might begin by cal-
culating the mean score for this variable along with its corresponding 95% Cls and
other descriptives. The series of commands using SPSS is as follows: Analyze >
Descriptive Statistics > Explore. (See steps for calculating Cls for correla-
tions above.) From there we simply move the “R_all” variable into the Depen-
dent list. The ClIs are set at 95% by default, but if you had reason to set them
more strictly or more leniently, you could do so using the Statistics dialogue
box. After clicking OK, the resulting output shown in Figure 3.7 would provide
a full set of descriptive statistics including the Cls. (This is one reason I almost
never calculate descriptives using SPSS using the Analyze > Descriptive
Statistics > Descriptives menu—it is not nearly as informative as the Explore
function.)

Calculating Cls and other descriptives using Excel is also quite simple:

1. Calculate the mean score by typing in the following in the first empty cell at
the bottom of the column of data you are interested in: =AVER AGE(X:Y),
where X andY refer to the top and bottom cells of data (be sure to exclude
any header rows).

2. In the cell immediately below the mean score, calculate the standard devia-
tion for the set of scores: =STDEV(X:Y), where X andY are the same as for
the step 1.

3. In the cell immediately below the standard deviation, calculate the interval
that will be added and subtracted from the mean score to construct the
CI: =CONFIDENCE.NORM  (alpha,SD,N). The alpha field here is usually
.05, corresponding to a 95% CI, but could easily be adjusted; for a 90% CI,
for example, this value would be .1. In the SD field of this formula, simply
type in the name of the cell where that value was calculated in step 2 (e.g.,
U55).And the N field refers to the number of data points/cases/observations
in the sample.
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4.  Construct the upper and low bounds of the CI by adding/subtracting the
value from step 3 to/from the mean calculated in step 1. Simply type into
two empty cells: = B — C and = B + C, where B refers to the mean score cal-
culated in step 1 and C refers to the interval calculated in step 3, respectively.

There are many ways to interpret Cls (see Cumming, 2012), but their primary
purpose is to help us situate mean scores in the context of the many other possible
values that might represent the true population score (as opposed to that of the
sample). As Carl Sagan (1996) put it, Cls are “a quiet but insistent reminder that
no knowledge is complete or perfect” (pp. 27-28). As with standard deviations,
considering the CIs around our mean scores, numerically and/or visually, helps
us avoid the temptation to view our samples and their mean scores as absolute.

In the case of abstract ratings for this particular L2 research conference, we can
see in Figure 3.7 that the mean score is 3.64 (on a scale of 1-5) with 95% ClIs of
[3.56, 3.71]. (ClIs are typically reported in brackets.) The width of the interval is
quite narrow, which is likely due to the relatively large sample (N = 287). Con-
sequently, assuming these data are based on a valid and reliable instrument, we
can be fairly confident that our point estimate of 3.64 is very close to the true
population mean for scores at this conference.

ClIs can also be used to indicate whether the difference between a pair of mean
scores is statistically significant and whether that difference is stable. This infor-
mation 1s also quite easy to access: We simply check to see whether the mean of
one group falls within or outside the CI for the other group’s mean. We can try
this out using the abstract data set. Let overall score here be the dependent vari-
able and let the presence of one or more errors be a dichotomous independent

Descriptives

Statistic Std. Error

R_all Mean 3.6359 .03923
95% Confidence Lower Bound 3.5587
Interval for Mean Upper Bound 3.7131
5% Trimmed Mean 3.6568
Median 3.7500
Variance 442
Std. Deviation .66464
Minimum 1.75
Maximum 5.00
Range 3.25
Interquartile Range 1.00

Skewness — 441 144

Kurtosis —-.316 .287

FIGURE 3.7 Output for descriptive statistics produced through Explore in SPSS
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variable. The menu sequence using SPSS is, again, Analyze > Descriptive Sta-
tistics > Explore. This time, however, we will move the “Errors” variable into
the “Factor list” box. As we can see in Figure 3.8, the mean score for the “no
errors” group (3.68) does not fall within the CI for the “error(s) present” group
[3.23, 3.60] and vice versa, thus indicating that the difference between these two
means 1s statistically different. We can also calculate the effect size for the differ-
ence between these groups using one of the tools described earlier: d = .40.
Though it is not strictly necessary, we could confirm this result by running
an independent samples ¢ test, which would produce a f value of 2.62 with an
associwated p value of .009. An advantage to following up our analysis based on
ClIs with a ¢ test is that the SPSS output will also provide a CI around the mean
difference, which can help us better understand how stable it is. In this particular
case, the mean difference between the two groups 1s .26, and the CI associated

Descriptives

Errors Statistic Std. Error

R_all no errors Mean 3.6837 .04301
95% Confidence Lower Bound 3.5990
Interval for Mean Upper Bound| 3.7684

5% Trimmed Mean 3.7071

Median 3.7500

Variance 435

Std. Deviation .65933

Minimum 1.75

Maximum 5.00

Range 3.25

Interquartile Range 1.00

Skewness —.506 .159

Kurtosis —.188 316
error(s) present ~ Mean 3.4199 .09036

95% Confidence Lower Bound|  3.2385
Interval for Mean Upper Bound| 3.6013

5% Trimmed Mean 3.4231
Median 3.5000
Variance 425
Std. Deviation .65158
Minimum 2.17
Maximum 4.75
Range 2.58
Interquartile Range .90
Skewness —.236 330
Kurtosis —.537 .650

FIGURE 3.8 Descriptive statistics and Cls for abstracts with vs. without errors
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with that difference is [.07, .46]. Yet another confirmation of the statistical dif-
ference between these means scores here is the fact that the CI around the mean
difference does not cross 0. What is perhaps more interesting is to note that the CI
1s somewhat narrow, indicating that our point estimate for the difference (.26) is
rather stable and reliable. If the CI had been much larger relative to the five-point
scale, say [.20, 3.9], we would have less certainty—that is, confidence—in our
observed mean difference. For a number of worked examples and practice inter-
preting Cls, see Cumming (2012) and, in the context of L2 research, Larson-Hall
and Plonsky (2015, p. 135).

Finally, it is not sufficient to simply calculate and examine a full set of descrip-
tive statistics when analyzing quantitative data. Such results also need to be made
available in published reports and/or appendices to justify interpretations and to
enable consumers of L2 research to draw their own conclusions as well. More
complete reporting of data also assists in meta-analyses and other synthetic efforts.
For these reasons and in line with the APA (2010), all mean-based analyses should
be reported, at a minimum, with their associated means, standard deviations, Cls,
and effect sizes (again, see Larson-Hall & Plonsky, 2015).

Looking Forward

The impetus behind this chapter—the entire volume, really—is to improve and
advance L2 research practices. Toward that end, I'd like to propose a revised model
of L2 research (Figure 3.9) both as a point of contrast with the descriptive model
in Figure 3.1 and as a suggestion for how our individual and collective research
efforts ought to proceed.

Conduct a study
(e.g., the effects of A on B)

p<0.05 p>0.05
d="? d="7?

v v

Accumulation of results (via meta-analysis)

v

More precise and reliable estimate of effects

v

Modify relevant theory, research, practice

FIGURE 3.9 A revised model of quantitative L2 research
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As with the model currently in place, the process begins when a researcher
conducts a study. Unlike the current model, however, assuming the study is well
designed, the importance of the study’s findings and its likelihood of getting pub-
lished do not hinge on the flawed notion of statistical significance. Rather, both
statistical and practical significance are considered and interpreted, and the results
of the study and others in the domain are brought together via research synthesis
and meta-analysis. By embracing a synthetic research ethic both at the primary
and secondary levels, the domain in question is able to arrive at a view of the rela-
tionships or effects in question that is more reliable, thereby enabling L2 theory
and practice to be more accurately informed by empirical efforts.

Tools and Resources

The following links provide access to very user-friendly programs for conducting
many of the analyses described in this chapter. The first, the langtest.jp devel-
oped by Atsushi Mizumoto, is an R- and web-based app (http://langtest.jp/);
the second, ESCI (http://wwwlatrobe.edu.au/psy/research/cognitive-and-
developmental-psychology/esci), is a set of freely downloadable Excel macros
designed by Geoftrey Cumming to help researchers consider and report results
with an emphasis on eftect sizes and Cls.

Further Reading

Cohen, J., (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Erlbaum.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and
meta-analysis. New York: Routledge.

Kline, R.B. (2013). Beyond significance testing: Statistics reform in the behavioral sciences (2nd
ed.). Washington, DC: American Psychological Association.

Larson-Hall, J. (2010). A guide to doing statistics in second language research using SPSS.
Chapter 4. New York: Routledge.

Wilkinson, L., & Task Force on Statistical Inference. (1999). Statistical methods in psy-
chology journals: Guidelines and explanations. American Psychologist, 54, 594—604.

Discussion Questions

1. Summarize, in your own words, the main arguments against the use of p
values and, conversely, in favor of “estimation thinking” and effect sizes.
Can you think of any counterarguments or situations in which the NHST
approach might be preferable or even justifiable?

2. Considering the current place of NHST and effect sizes in quantitative L2
research, what changes would you suggest to the field?

3. The subtitle of this chapter (“A back-to-basics approach to advancing quan-
titative methods in L2 research”) implies that power and statistical vs. practice
significance have been around for a while. If this is the case, why have we as
a field been so slow to embrace these notions in these research practice?
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4. Find a quantitative study in your area of interest. To what extent does it
adhere to NHST and associated data analytic techniques and interpretations?
How could the study be revised to provide more informative and precise
results?

Notes

1. These values also assume a normal distribution; variance must also be considered in
calculating power and effect sizes.
2. However, the width of CIs for effect sizes is influenced by sample size.
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